I- POWER STATION ECONOMICS

1.1. Economic Selection Of Plant:

Economic selection of plant is based on comparing the total annual costs of generating the required amount of electrical energy as per the specified conditions using different alternatives of station design. The total annual cost of generation can be augmented in the following two main items:

1- Annual fixed cost.
2- Annual opezating cost.
For a given design, as more sophisticated equipment is added to improve station efficiency, the total investment increases and with it the annual fixed costs. As shown in Fig.1, the general relation between annual fixed costs and capital investmerit can be expressed as:

$$
\mathrm{CF}=\mathrm{RA}
$$

Where: $C F=$ annual fixed cost, L.E.
$R=$ fixed charge rate, as decimal,
$A=$ capital investment ,L.E.

Capital Investment A,L.E.
Fig.(1) Annual Fixed Cost

Fig.(2) Annual Operating Cost.

The benefit of the higher effeciency resulting from increased investment is realized in lower fuel and maintenance costs. Maintenance and repair are generally dependent on the amount of fuel burned. But labour, supervision and supplies costs can be considered constant in most cases.

The anvual operating costs C include the costs of fuel, maintenance, labouretc, and it is graphically fllustrated in Fig. 2.

The total annual cost C is obtained by adding the total annual fixed and operating costs,i.e.,

$$
C=C f+C o
$$

The relation between the total annual costs and the capital investment is graphically illustrated in Fig.3. It is clearly shown that there is some value of the capital investment A giving a minimum value of the total annual costs . This minimum takes place when

$$
\frac{\mathrm{dc}}{\mathrm{da}}=0
$$

Substituting $C=C f+C o$, we get

$$
\frac{d c}{d A}=\frac{d C f}{d A}+\frac{d C o}{d A}=0
$$

Which gives: $\frac{d C o}{d A}=\frac{-\mathrm{dCf}}{\mathrm{dA}} \quad=-\mathrm{R}$
This shows that the total annual costs will be minimum only when the slopes of the annual fixed and annual operating cost curves become numerically equal but opposite in sign.

1.2. PLANT CAPACITY

After defining the load requirements in the form of a load duration curve, the capacity of the plant can be determined. The plant must be equal at least to the maximum demand of the load. But the station capacity is generally selected to give some reserve capacity. This reserve capacity differs from system to system according to size and number of units operated in the system and the security policy accepted by the management. In some of the large power-supply systems, made up of several generating units, design ruleshave been adopted to maintain a total installed capacity equal to the expected maxitem dermand plus the capacity of the two largest units. This is based on the expectation that at the time of the maximum demand one of the largest units or an equivalent amount of capacity may be out of service for over-hauling. Then, witi all the other units actively operating, the peale load can still be carried if the other largest unit should fail owing to mechanical breakdown or operating ercor.
1.3. SIZE AND NUMBER OF UNII'S IN A NEW STATION

The size and number of units to be installed in a new station is affected by many factors. One important factor is whether this new plant is being designed to supply a load in a completely newely dectiefied area, i.E.; will form its own system, or to supply power to an existing system. In the first case, the proposed capacity of the plant, which is taken equal to the estimated maximm demand plus the planned reserve capacity, may be installed in one unit of equipment if an interruption of service can be tolerated at any time. fowever, economical considerations may dictate in case of comparatively load factors to split the capacity among two or more units.

In most cases the interruption of service cannot be tolezted, so, if the load to be served is a small one it may pay to install two un: is of equipment each being capable of suppling the maximum demand independently.

In the second case,i,e; when the new plant is being designed so supply an existing system, the size and number of units to be installed in tae new plant will be based on the following considerations:

1- The expected rate of increase of the maximum demand over a period of years.
2- The general design policy established by the system management.
3- The available space for units to be added.
If the expected rate of size of the maximum demand is increasing and shows promise of continuing into the future, the capacity of new units may axceed the capacity of any existing unit wifh the expectancy of saving on total costs over a period of years. Otherwise, the capacity of new unils very likely will be selected equal to that of the largest existing unit.

1.4. PLANI CAPACITY BASED ON PROBABIL ITY ANALYSIS

At the present time the probability theory is being used by most of the electric power utilities to estimate their probable system outages and to arrive at a suitable reserve capacity based on specified security levels.

Considering a system having N units and assuming that the forced outage rates of these units, experssed as the ratio of numbers of days outage to the number of days outage to the number of days in the year, are : Q1, $\mathrm{Q} 2, \ldots \ldots$, m respectively. The corresponding operating rates of the units $1,2 \ldots, n$ will be $\mathrm{P} 1, \mathrm{P} 2, \ldots, \mathrm{Pn}$ respectively, where $\mathrm{P} 1+\mathrm{Q} 1=1, \mathrm{P} 2+\mathrm{Q} 2=1, \ldots, \mathrm{Pn}+\mathrm{Qn}=1$. Therefore : $\quad(P 1+Q 1)(P 2+Q 2) \ldots \ldots \ldots(P n+Q n)=1$

This equation can be easily used to find the probable different combinations of units out of service and in service. For a system having N simler units, i.e; $\mathrm{P} 1=\mathrm{P} 2=\ldots .=\mathrm{Pn}=\mathrm{P} \quad$ and $\quad \mathrm{Q} 1=\mathrm{Q} 2=\ldots \ldots=\mathrm{Qn}=\mathrm{Q}$,

The above equation reduced to:

$$
(P+Q)^{n}=1
$$

To make a complete analysis, which may be done later, the outage probabilities are integrated with the system load - duration curve to measure the total loss of kilowatthour generation fo? different unit sizes before deciding which size is to be recormended for use.
(2) ECONOMIC OPERATIUN OF POWER STATICNS

2.1. STATION PERFORMANCE CURVES

Performance of generating plants is compared by theiv average themal efficiencies over a period of time. The average thermal efficiency of a plant is defined as the ratio of useful energy output during the period to the total energy input for the peziod. The condition of copmarizon is that all plants sh.uld be operated at the same conditions,i.e.; using the same co-oling-water temperature, the same shape of load-duration curve, the same total output and the same quality of fuel. If plants are opezated at different condilions, which is the most probable case, their performance cannct be compared before correcting them to the same controlling conditions.

The pe:formance of a generating unit is derived usually from test results for individual equipment and can be graphically represented by the relation between the output power, P, of the unit measured in KW or MW and the corresponding energy input, 1 , per hour operation measured in millions of kilocalories $/ \mathrm{hr}$. The shape of the input - output curve of a stat on may be as shown in Fig. 4a.

Fig. (4) Power Station Performances. (A) Input-Output Curve;
(B) Efficiency Curve ;
(C) Heat rate and Incremental heat rate

A more expressive curve for the unit performance is the efficiency curve shown in Fig. 4b. This curve can be obtained directly from the input-output curve using th $=$ relation:

$$
N=\frac{0.8604 \mathrm{P}}{1} \times 100 \text { percent }
$$

Where P is the output power in MW and I is heat input measured in Gigacalories/ Hz .

The form of the efficiency curve is usually as shown in Fig.4.b. In addition to the efficiency curve, the heat rate $H R$ and increment, heat rate IHR curves shown in Fig. 4.C. are also used as unit performance curves. The heat rate curve is derived by taking at each lad the corresponding input, then

$$
\mathrm{HR}=\frac{I}{P}=\frac{86.04}{\mathrm{~N} \%} \quad \text { G.Calories } / \mathrm{MWH}
$$

is plotted against the corresponding value of P.
If the input - output curve is expressed also mathematically in the form of a polynomial as follows:

$$
I=a+b P+C p^{2}+o / p^{3}
$$

Then the heat-rate will be given by:

$$
H R=\frac{a}{P}+b+c P+d P^{2}
$$

The incremental heat-rate curve is derived from the input-output curve by finding at any load P the additional input dl required for a given additionel output dP; i.e.; the incremental heat rate (IHR) defined as:

$$
\mathrm{IHR}=\frac{\mathrm{dI}}{\mathrm{dP}} \quad \text { G.Calories }
$$

Is plotted versus the output power P for the full range of the input-output $\mathrm{cu}-$ rve. Nathematically the IHR is the slope of the I-P curve, and physically is the amount of additional input required to produce an added unit of output at any given load. The $H R-P$ and IHR $-P$ curves are shown in Fig. 4.C.

Now a question arises about the loading of the generating unit at which it has the highest efficiency. Looking at the efficiency curve, it is easy to find that the unit has its maximum efficiency when $\frac{d N}{d I}=0$, or
$\frac{d}{d I} \frac{(86.04 \mathrm{P})}{I}=86.04 \frac{\mathrm{~d}(\mathrm{P} / 1)}{\mathrm{dl}}$

$$
=86.04\left(\frac{1}{I} \frac{d P}{d l}-\frac{P}{I 2}\right)=0
$$

which gives :

$$
\frac{P}{I}=\frac{d P}{d I} \text { or } \frac{I}{P}=\frac{d I}{d P}
$$

This shows that th= unit has the highst efficiency only when its reat-rate ($H R$) equals its inremental heat -rate (IHR).
Referring to Fig. 4C. it is easy to show that the unit will have taximum efficiency if loaded by the power Pm corresponding to the point of intersection of the $H R$ and IHR curves.

2.2. AVERAGE HEAT RATH:

If the generating unit is operated to supply a load defined by a load duration curve as shown in Fig. 5A, the input to the unit varies according to the output, which means that it will operate at different heat rates. The average heat-rate of the unit for the whole time period of the load duration curve is defined as:

$$
\text { Average } H R=\frac{\text { total input during the pe:iod }}{\text { total output during the period }}
$$

To find the average $H R$ according to this definition, we have to make use of both the load - duration curve (Fig.5A) and the input-output curve of the unit (Fig. 5B).
The total output of the unit during the whole period is given by :

$$
\sum P \Delta t=P_{1} \Delta t_{1}+P_{2} \Delta t_{2}+\ldots \ldots+P_{6}+t_{6}
$$

(a)

(b)

Fig. 5 Determining average hent nate.
The total output of the unit will be measure in MWH if P is in NW and T in hours. Also after finding the unit input $I_{1}, I_{2}, \ldots \ldots, I_{6}$ corresponding to the outputs $P_{1}, P_{2}, \ldots, P_{6}$ respectively from Fig. $5 B$, we can find the total unit input during the whole pert od as:

$$
\Sigma I \Delta t=I_{1} \Delta t_{1}+I_{2} \Delta t_{2}+\cdots \cdot I_{6} \Delta t_{6} \text {. G.Calies. }
$$

The average heat rate will be thin given by:

$$
\text { Average } H R=\frac{I_{1} \Delta t_{1}+I_{2} \Delta t_{2}+\cdots+1_{6} \Delta t_{6}}{P_{1} \Delta t_{1}+P_{2} \Delta t_{2}+\cdots \cdots+P_{6} \Delta t_{6}}=\frac{\text { lav }}{\text { Pav }}
$$

Where:
lav is the average input to the unit $=\sum_{I \Delta t}$
And: Cav is the average output of the unit $=\frac{\sum \mathrm{P}_{\Delta}^{\mathrm{T}} \mathrm{t}}{\mathrm{T}}$
T is the total hours of th= period $=\Sigma \Delta t=\Delta t_{1}+\Delta t_{2}+\ldots .+{ }_{6}$
Example: The input -output of a 20 MW generating station is defined by:

$$
I=7.56+0.126 \mathrm{P}+0.164 \mathrm{P}_{2}
$$

Where 1 is in G.Cal. per hour and P is in MW. Find the average heat rate of this stat: on for a day when it is operating at a load of 20 NW for 12 hr . and kept hot a zero load for the remsining 12 hours. Compare this average heat rate with the heat rate that would obtain if the same energy were produced for the day at a constant $24 \mathrm{hrs} .$, ie. at $100 \% 1 \mathrm{cad}$ factor.

Solution:

At: $\mathrm{P}=0: \quad \mathrm{I}=7.56+0.126 \times 0+0.164=7.56 \mathrm{G} . \mathrm{Cal} / \mathrm{Hr}$.
At: $P=20 \mathrm{MW}: \quad I=7.56+0.126 \times 0.164 \times 20^{2}=75.68 \mathrm{G} . \mathrm{CaI} . / \mathrm{Hr}$.

$$
\begin{aligned}
& \text { P } t=0 \times 12+20 \times 12=240 \mathrm{MW} \mathrm{hr}, \\
& I \quad t=7.56 \times 12+75.68 \times 12=998.88 \text { G.Ca1. }
\end{aligned}
$$

Average daily heat rate HR: $\underline{\Sigma I \Delta t}=\underline{998.88}=4.162 \mathrm{G} . \mathrm{Cal} / \mathrm{MWh}$.

$$
\Sigma P \Delta t=240
$$

Average lad:

$$
\frac{240}{24}=10 \mathrm{NW}
$$

At $P=10 \mathrm{MN}$ for $24 \mathrm{hr} . \quad I=7.56+0.126 \times 10+0.164 \times 100=25.22 \mathrm{G} . \mathrm{Cal} / \mathrm{hr}$.

$$
\sum 1 \Delta t=\quad 25.22 \times 24=605.28 \text { G.Cal. }
$$

Corresponding HR $=\frac{605.28}{240}=2.522$ G.Cal.

This shows that, if it were possible to redistribute the generation of the total daily output to a constant rate for the 24 hrs ., a saving of $4.162-2.522=1.640$ G.Cal./ Mhr. could be achieved.

2.3. ECONOMIC LOAD SHARING BETWEEN GENE $\begin{aligned} & \text { AT ING UNIT'S IN A STAT ION }\end{aligned}$

It has been shown in the previous section that generation economics are affected not only by station characteristics but also by th: operating load zurve. The study was limited in the previous section to a single-unit station. A system having more than one generating unit has the proper load divisionas a problem. Improper load division may appreciably decrease the thermal effeciency of the station as a whole, and consequently the cost of generation pe: MWhr. will be increased.

2.3.1. THE COST CURVE OF A GENERATING UNIT

The study in this section , as it was in previous sections,is concentrated on fusl fired stations. This means that a generating unit consists of a boiler,turbine and generator. The major compound of a generator oprating cost, as has been previosly shown, is the cost of full consumption pe: hour. So it is easy to convert the input-output curve of gensrating units given in Fig. 4 A into a cost curve by muleipling the input quantities (G.Cal/Hr.) by the price of fuel (L.E./G.Cal.) to get the fuel cosst (L.E./hr.). This cist can be taker as approximately equal to the operating cost of the unit (L.E./hr.). A typical cost curve is showr in Fig. 6 where P min, is the minimum loading limit below whith it is unecononical or technically unfeasible to operate the unit and P max. is the maxinum outpu: limit. It is important to note that the actual input-output and cost curves of generating units has discontinuities at steam valve openings which are not shown in Zigures given he:e.

The cost curve of unit I in a station having N units can be expressed as:
$\mathrm{Ci}=\mathrm{Ci}$ (Pi) L.E. $/ \mathrm{Hr}$. at output power Pi MN.
This function can be approximated, by applying a suitable curve fi=ting method, to a second degree polynomial with a sufficient degree of accuracy as follows:

$$
C i=\frac{1}{2} a_{i} P_{i}^{2}+b_{i} P_{i}+d_{i} \quad \text { L.E. } / h r .
$$

Where $a i$, bi and $d i$ are constants for the unit 1 .
The slope of the cost curve at any output power $P_{i}, i . e ., d c_{i}$ is called the incremantal fuel cost (IC) i and is expressed in L.E./Mhr. $\frac{1}{d p_{i}}$
If the cost curve is approximated to a second orde: polynominal, the incremental cost will be given by: (IC) i $=a_{i} P_{i}+b_{i} \quad$ L.E. MWhr.
Which is a linear relationship. Altematively, we can fil a polynominal of suitable degree to represent the IC -P curve in the inverse form:

$$
P_{i}=q_{i} B(I C) i+d i(I C)^{2} i+\ldots \ldots .
$$

2.3.2. ECONOMICAL LOAD SHARING BY TWO UNIT'S IN A STATICN

Considering firestly a two-unit station that is askel to supply a load connected to its fuses by a power PD at the lowest pessible cost. It is required to find the share of each unit in the generated pover to fulf:1 this requirement. Let the share of unit 1 be P_{1} and that of unit 2 is P_{2}, Assuming the corresponding cost of generation to C_{1} and C_{2} ror units 1 and 2 respectively,
The total cost of generation will be:

$$
C=C_{1}+C_{2}=C_{1}\left(P_{1}\right)+C_{2}\left(P_{2}\right) .
$$

Also P_{1} and P_{2} are related by:

$$
\mathrm{P}_{1}+\mathrm{P}_{2}=\mathrm{P}_{\mathrm{d}}
$$

The cost of gensration é will be minimum only if $\frac{d c}{\mathrm{dF}_{1}}=0$
Which gives

$$
\frac{\mathrm{d} c_{1}}{\mathrm{dP}_{1}}=\frac{-\mathrm{dc}_{2}}{\mathrm{dP}_{1}}=\frac{-\mathrm{dc}_{2}}{\mathrm{dP}_{2}} \frac{\mathrm{dP}_{2}}{\mathrm{dP}_{1}}
$$

But the equation $P_{1}+P_{2}=P_{d}$ gives $\frac{\mathrm{dP}_{2}}{\mathrm{dP}_{\frac{\varepsilon}{}}}=-1$
which when substituted in the last equation yields: $\mathrm{dC}_{1}=\mathrm{dC}_{2}$

Or: $\quad(\mathrm{IC})_{1}=(\mathrm{IC})_{2}$
This means that the condition for minimum lost of generazion in a two-unit station is to operate the two units at equal incremental zosts.

Example: The incremental fuel costs in L.E. MWhr fo: a plart consisting of two units are: $(\mathrm{IC})_{1}=\mathrm{dC}_{1}=0.027 \mathrm{P}_{1}+5.32$ LE/MMH.
(IC) $2=\frac{\mathrm{dC}_{2}}{\mathrm{dP}_{2}}=0.033 \mathrm{P}_{2}+4.0 \mathrm{C} \quad \mathrm{LE} / \mathrm{MWH}$.

Assume, that both units are operating all th= zine to supply a load having the following load-duration clirve:

Load, MN	40	80	120	160	250	250
Duration, t	6	6	4	4	2	2

and that the maximum and minimum loads on sach unit are to 125 and 20 MW respectively.
a) Construct the daily loading table for joth mili if they are opezated to supply the given load at minimum possible cost.
b) Calculate the daily saving due to econaminal rathe: than equal load sharing between the two units.

- Solution:
a) Economical load sharing based on equa? incremental fuel costs can be calculated from the following equation:

$$
P_{1}=\frac{0.033 P D-1.32}{0.06}
$$

Where PD is the station loading.
The following table gives the required econonical atd constreined loading of both units:

PD,MN	40	80	120	160	200	250
t, hr.	6	6	4	4	2	2
Optimum laading	0	22	44	60	88	1155
P_{1}						
Of units, MW P_{2}	40	58	76	94	112	1345
Constrained 20	20	22	44	60	88	125
opt. P_{1}						
Min.loading, 2	20	58	76	94	112	125
MW P_{2}						

b) The optimum loading labe obtained shows that for all loads th* unit 2 is asked to carry more than half the load, which means that its operating cost for eçually divided loads will be less than for optimum load sharing.

Total daily increase in cost of operating unit 2 at tabulated loads rather than equal load shring is given by:
$6 \times\left[\int_{20}^{2}\left(0.033 p_{2}+4.0\right) d \rho_{2}+\int_{40}^{58}\left(0.033 p_{1}+\ldots .0\right) d p_{2}\right]+$

$\frac{2 x\left[\int_{20}\left(0.033 P_{2}+4.0\right) d P_{2}+{ }_{125}^{115}\left(0.033 P_{2}+4.0\right) d p_{2}\right]}{2}=$
$=\frac{\frac{0.033}{2}\left[6 \times\left(58^{2}-40^{2}\right)+4 \times\left(76^{2}-60^{2}+94^{2}-80^{2}\right)+2 \times\left(112^{2}-100^{2}\right)\right]}{4 \times[6 \times(58-40)+4 \times(76-60+24-80)+2 \times(112-100)]}$
$+4 \times[6 \times(58-40)+4 \times(76-60+24-80)+2 \times(112-100)]$
$=1570.98 \mathrm{~L} \cdot \mathrm{E}$

Total daily decrease in cost of operating unit. 1 at tabulated loads rather than equal load sharing is given by:

$$
\begin{aligned}
& \text { dial load sharing is given by: } \\
& \frac{6 \times\left[\int_{26}^{20}\left(0.027 p_{1}+5.32\right)+d p_{1}+\int_{22}^{40}\left(0.027 p_{1}+5.32\right) d p_{1}\right]}{+4 \times\left[-\int_{46}^{60}\left(0.027 p_{1}+5.32\right) d p_{1}+\int_{66}^{80}\left(0.027 p_{1}+5.32\right) d p_{1}\right]}+ \\
& +2 \times\left[\int_{85}^{100}\left(0.027 p_{1}+5.32\right) d p_{1}+\int_{125}^{125}\left(0.027 p_{1}+5.32\right) d p_{1}\right]= \\
& =1692.18 \text { LE. }
\end{aligned}
$$

Total daily saving $=1692.18-1570.98=12$:. 2 LE , Corresponding annual saving $=44268.3$ L.E.

2.3.3. Optimum Load sharing for Multi-Unit Stations:

The simple procedure followed in deriving the necessary conditions for optimum load sharing in a two-unit station cannot be easily followed for getting the optimality conditions for load sharing in multi-unit stations. So it is better to have a more general formulation for the multi-unit case. Assuming that N units are selected to supply th; load PD during the period adder study and that these units are selected according to acceptable rules of scheduling units in the station. Obviously the following constraints shall be considered while supplying the combined load 0 : the station.

$$
\begin{equation*}
\frac{\sum_{i=1}^{m} P_{i} \max \geqslant P_{i},}{P_{i} \min \leqslant P_{i} \leqslant P_{i} \max , 1 i=1, x_{2} \ldots \ldots, m} \tag{1}
\end{equation*}
$$

In addition to that th- considerations of spinning reserve, to be discussed later, requires that

$$
\begin{equation*}
\sum_{i=1}^{\text {that }} F_{i} \text { musk }>P_{D} \tag{3}
\end{equation*}
$$

By a proper margin, which means that Eq. (3) is a strict inequality,
Since the effect of reactive loading of genera:ors in their active power losses in of negligible order, it is assumed here that: th= manner in which th: reactive load of the station is shared among various on-time generators has negligible effect on the economy of generation.

The problem now :s "what is th= opt al manner in which the load demand PL must be shared by the gene:ators on the fuse? . The solution to this problem is to minimize the cost Junction.

$$
\begin{equation*}
C=\sum_{i=1}^{N} C_{i}\left(P_{i}\right) \tag{4}
\end{equation*}
$$

Under the equality constraint of meeting the load demand, i.e.

$$
\begin{equation*}
\sum_{i=1}^{m} P_{i}-P D=0 \tag{5}
\end{equation*}
$$

and the inequality constraints given by Eos. (1), (2) and (3).
This problem is a typical separble mon-linear programming problem. Assuming that the inequality constraints are not effective at present, the problem can be solved by the method oz Lagrange Multipliers. The Lagranian is defined as:

Where λ is the Lagrange multiplier.

The cond.t. on of Optimality is

$$
\frac{\text { Ed }}{\Delta p i}=0 \text { or } \frac{a c i}{d p i}=\lambda \text { for } i=1,2, \ldots, n
$$

Where di is the incremental cost of the i th generator (LE/MWh). di
Equation (7) can be rewritten as:

$$
\frac{C^{\prime} 1}{d P_{1}}=\frac{d C_{2}}{d P_{2}}=\cdots \cdot=\frac{d C_{n}}{d P^{2}}=\lambda
$$

Whidimans that the optimal loading of generator corresponds to the equal incsenertal cost point of all generators. The numerical solution of the optimal lad sharing probleris can be easily done applying iterative techniques using digital computers. The procedure of solut on can be arranged as follows:

1. Those a trial value of ide. $I C=(I C)$.
2. Solve equations (8) for $\mathrm{P}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots \ldots, \mathrm{n}$.
3. $F\left|\sum_{i=1}^{\infty} P_{i}=P_{D}\right|<E$
(a specified acceptable accuracy of solution), th : optimal solution is reachoo. Otherwise,
4. Increase (IC) by an increment Δ (IC) if $\left[\sum_{i=1}^{n} P_{i}-P_{D}\right]<0$, or decrease (IC) by the increment and repeat from step 2.
Δ (IC) if $\left[\sum_{i=1}^{n=1} P_{i}-P_{D}\right]>0$
5. If during the iterative process the loading Pj of any generator J reaches the 1 imiz Pj min. or Pj raw., the share of this generator in the demand should te held fixed at the reached limit and th remaining load power $\left[P_{D}-\left(F_{j}\right.\right.$ max. or P_{j} min. $]$ is then shared between the remaining genezators on squal incremental cost basis.

2.3.4. OPTIMMM SCHEDULIEG JF GENERATING UNII'S IN A STATION

Scheduling of generating stations units means determining the units of the stat ion that should be operated to supply a particular load. This problem is also called the unit commitment (UC) problem. It is initiated by economical considerations, since it as clear that it is not economical to run all the units available in a station al. the time whatever may be the value of the load on it. It is beater to clarify this point through an example.

Example: The two units considered in the previous example are operated to supply a load having a daily load curve as follows:

The cost curves of the two units are given by:

$$
\begin{aligned}
& C_{1}=0.0130 P_{1}^{2}+5.32 P_{1}+16.0 \text { LE. } / h r_{1}, \text { and } \\
& C_{2}=0.0158 P_{2}+4.00 P_{2}+13.3 \text { L.E/hr. }
\end{aligned}
$$

The cost of taking elver unit off the line and returning it to service is LE. $\angle 5$. Find if it is economical to keep both units in service continuesouly or to remove one of th ः units for the 12 hours of light load.

Solution:

Optimum load sharing on the basis of equal incremental for both units is as follows:

$P \quad L \mathbb{W}$	76	220
Eccomical P_{1}	19.8	99
Sharing, MN P_{2}	56.2	121
Constrained P_{I}	20	99
Sharing, MN P_{2}	56	121

Total cost of generation to supply the 220 MW load for a 12 hr .period is:

$$
\begin{aligned}
& c=C_{1}+C_{2} \\
& =\left[\left(0,0130 \times 90^{2}+5.32=99+16.0\right)+\left(0.0165 \times 121^{2}+4.00 \times 121+13.3\right)\right] \times 12 \\
& =[. E .16907 .634
\end{aligned}
$$

Total cost of generation to supply the 76 MW load for the other 12 hr .period is:

$$
\begin{aligned}
& =C_{1}+C_{2} \\
= & \left.-\left(0.0130 \times 40^{2}+5.32: 20+16.0\right)+\left(0.0165 \times 56^{2}+4.00 \times 56+13.3\right)\right] \times 12 \\
= & -E \quad 4999.728
\end{aligned}
$$

Total cost when both un:1s are operating throughout the $2 L$ hrs. period $\leqslant s$: L.E. 21307.362

By inspecting th ₹ two cost equations it is easy to find that unit 2 is more economizal for lig't loads than unit 1 , so if it is required to put one of the units of furing the light load period, it will be economical to put unit 1 off. The total cost of generation during the light load period will be:

$$
\left(0.0165 \times 76^{2}+4.00 \times 76+13.3\right) \times 12=\text { L.E } 4951.248
$$

Total operating cost $f 0=t h \div$ light laad period will be the cost

```
of geveration plus the start-up cost of unit l, i.e.
    4951.248++5.0= LE 4996.248
```

comparing this with the earlier case, it is clear that it is more economical
to pul mit 1 off during the light level period and to start it up again to
take part in the larger load than keeping it running all the time.

It is easy to see that if the star--up cost is. IE, 50, than it will je more economical to keep both units ruming all the time.

This example shows that the unit commitment problem is of economical impor-ance. A simple but sub-optional approach to this problem is to impose prorizy ondering based on unit efficiency; i,e. to commit the most efficient unit Einstly and then the less efficient one and so on as the load increases.

A simple, but highly time consuming, way of finding the most economical combination of units to supply a given load, is to try all possible corrbinations of urite in the station that can supply this load, to divide the load among the units of each combination using the equations (IC) i $=$ for $i=1,2, \ldots$, II where m is the number of generators selected to operate in parallel in the combination. The object is to determine the combina ion which has the least cperating cost.

OPTIMUM UNIT COMM TMFNT APPLYING DYNAMIC PROGRAMMING.

The application of dynanic programming uethods to find a unit commitment (UC) table for a complete load cycle can lead to a considerable saving in computariva effort and time as compared to the above method. The reason for this saving is that the unit combinations to be tried applying dynamic programming nethods are much reduced in number; in addition it is not necessany to solve the coordination equationa: for optimum load sharing,

In the dynamic programming approach the total number of units, $\mathrm{N}_{\text {, }}$ available in the stazion, their individual cost curves and the load curve on which the staticn will be operated are assumed to be all known in advance. Also, it will be assumed that the load on each unit or combination of units is changed in sufficiently small and iniform steps of εp mw (e.g. I MW)

Starting arbitravily with any two wits, the most economical combination is determined for all the discrete load levels of the combined output of the two units. At each load level the most economic answer pay be to run either unit or both units with a certain load sharing between the two. The most economical cst curve obtained in the discrete form for the combination of the the emits can be viewed as the cost curve of a single equivalent unit. A third unit is nor added tc the single unit equivalent to the first two and the same procedure is repeated to find the cost curve of a new single unit equivalent to the three combined wits. It is important to note here that in tills procedune there is no reed to make combinations of the first and third units or of the second and third units since all of these combinations are already considered in the second dynamic programming step. The process is repeated till all available units are included in the study. This approach has the advantage that it is quite easy to determine the optimum manner of loading ($k+1$) units if the optimal way of loading k units is already known or determined.

Let a cost function $F_{K}\left({ }_{K}\right)$ be defined as follows: -
$F_{K}(x)=$ The minimum coss in LE/HR of generating $\times M W$ by k units. $F_{k}(y)=$ Cost of generating y NW by the Kth unit. $F_{k_{j}}(x-y)=$ The minimum cost of generating $(x-y)$ MW by the remaining $(k-1)$ units.

According to the dynamic programing approach the following recursive relation.

$$
\begin{align*}
& F_{K}(x)=\text { mirizumt of }\left\{E_{K}(y)+F_{K-1}(x-y)\right\} \text { for all poss, ble } \\
& \text { values of } y
\end{align*}
$$

can be easily used to determine the combination of units yielding minimum operating cost for loads ranging in convenient steps, from the minimal per-miss-ble load of the smallest unit to the sum of the capacities of all available units. In this process the total minimum operating cost and the load shared by each unit of the optimal combination are automatically detemined for each load level.

EXAMPLE:- A power station having four thermal generating units with parameters listed in the following table is required to supply a load of 9 MW . Determine the most economical UC tabulation.

| UNIT | PAIR | MAR | COST CURVE PARAMETERS ($\mathrm{d}=0)$
 $\mathrm{a}\left(\mathrm{LE} / \mathrm{MW}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| | | | b (LE/MW) |

solution. let the lad changes be in steps of I MN.
$F_{1}(g)=F_{1}(g)=y_{2} a_{1} p_{1}^{2}+b_{1} p_{1}=0.05 \times 9^{2}+3.13 \times 9=L E 32.22 / h r_{r}$
 $\left.\left[F_{2}(9)+F_{1}(0)\right]\right]$
computing these quantities term-by-term and comparing, we get

$$
F_{2}(9)-\left[F_{2}(2)+F_{1}(7)\right]=L \cdot E \cdot 31.84 . / \mathrm{hi} .
$$

In the same way, we can calculate $F=(8), F_{2}(7), \ldots, F_{2}(1), F_{2}(0)$.

Using the recursive relation (9), we can now calculate F3(0), F3(1), ...F3;9)

$$
\begin{aligned}
F_{3}(9) & \left.=\text { min of }\left[\left[F_{3}(0)+F_{2}(9)\right], F_{3}(1)+F_{2}(8)\right], \cdots ;\left[-F_{3}(9)-F_{2}(0)\right]\right\} \\
& =\left[f_{3}(0)+f_{2}(9)\right]=\text { L.E, 31.84/hr. }
\end{aligned}
$$

Proceeding similarly, we get

$$
F_{4}(9)=\left[F_{4}(0)+F_{3}(9)\right]=L E 31.8 L / \mathrm{hro}
$$

The obtained values for $F_{1}(9), F_{2}(9), F_{3}(9)$ and $F_{4}(9)$ lend to or conclusion that optimum units =o be committed for a 9 MW load are 1 and 2 sharing the load as 7 MN and 2 MN respectively with a minimum operating cost of LE. $31.84 / \mathrm{HR}$.

It should be noted here that the solution accuraly is dependent on the step size. If a higher accuracy is required, the step size should be reduced. But care must be taken because reduced step size may result in a considerable increase in computation time and required storage capacity.

The described procedure is repeated for ocmbired loads ranging from i i IN to 48 MW (raximum power thyt can be delivered by the foum units) in steps of 1 MW to prepare the optimum LC table shem kelow. It is easy to note that load values for which the uni= commiturer.t coes not charge are combined in one range.

The UC table is usually prspared only once for a given set of imits, and as the load cyole on the station changes, It would only mean changes in starting and stopping of umits vith the Jasic unit comitment table remaining unchanged.

d range MW	Uhits to je committed	Spinning cepacity 3W
1.5	2	12
6.13	-,2	24
14-18	$-, 2,3$	36
19-48	2,2,3,4	48

2.3.5 Station Cost Curve

Using the UC table and increasing load in steps, the most economical operating cost of the station is celcultated EJr the complete range of stations capacity by applying the criteria of of imam load sharring among comitted units for each load value. The result is the jverall station cost oharacteristic in the form of a set of deta points. This set of fata points can be used to apply a suitable ourve fitting technizue to obtain the required cost curve of the station in the form of a sezoli or higher order polynomical. This curve can be used for economic lcal sharring along generating stations in an intercormerted system.

2.3. 2 . SECURIIY CONSTRA IIED OPTIMAL UNIT COMMITMEINT

Every electric de:lity is normally under obligation to provide its consumers a certain degree of continuity and quality of service. Therefore, econary and seliability must be groperty coordinated in arriving at the operational unit commitmert decision. A jurely economic UC decision must be modified to take reliabilily requirments into consideration. As has been already explained, the only constraizt zaken into acosunt while preparing the economic UC table was the fact that the toral capacity on line should be at least equal to the load. The mergin, if any, jetween th: capacity of committed units and load was incidental. Under these condizions if one $p z$ moze of the running units were subjected to a forced outage (random outage), it may not be possible to meet the I ad requi ments. To bring a zold spare unis on steam and to synchronize it to take up the lad will be taking several hours ($2-3$ hours), so that ths load cannot be met for intolerably Iong periods of time. Therefore, to ment contingencies, ths capacity of committer unitミmust have a definite margin over the load requirements at all times. This margin is known as the spinning reserve and should ensure continuity of supply up $t=$ a certain extent of probable loss of generation capacity.

Since the unil wilch is to provide the spinning reserve at a particular time has to started severa hours ahtad, the problem of supply reliability (or securit λ has to be rreatec in totality over a pe:iod of one day. The analysis here depexds on failure and repai rates of running units. The fail rate is the numbe: of random failures of the unit per year, and the repair rate is the numbe: of repairs pe: year. The failure and repair rates can be found from the past date of unit三 (or othsr similar an:rs elsewhere) nd are calculated as the inverse of mean time to failure (mean "و' time) and the mean time to repair (mean"down" time) respectively. Denoting the failure rate by and the repair rate by , we can write the probabilities (porq,) of a unit being in "up" (service) or "down"iforced cutage) states at ar-y time as

$$
\begin{align*}
& p=\frac{p}{\mu-\lambda} \tag{iv}\\
& q=\frac{\lambda}{\beta+\lambda} \tag{ii}
\end{align*}
$$

The frobabilities P and Q are also temer as availability and unavailability respactively.

For a system having N operating (ruming) unit气, the probability for the system to be in the state I defined by K units in service and ($n-k$) in forced outage is given by

$$
\begin{equation*}
P_{i}=\prod_{j=1}^{\mathrm{age}} \mathrm{P}_{j}^{\mathrm{s}} \prod_{j=k+1}^{n} q_{j} \tag{12}
\end{equation*}
$$

The probability that the available generation capacily (sum of capacities of units camitted) at a particular hour is less than the system load at that time, is defined as: $\quad S=\sum$ Pin $\quad S i$

Where Pi is the probability of system being in state i as definec by equation(12).
Ri is the probability that system state i causes breach of system security.

This formula is known as Patton's security function when system load is deterministic (i.e. known with xonplete certainty), $R i=1$ if available capacity is less than load and 0 otherwise. In this sense is a quantitative estimate of system insecurity.
Theoretically equation (13) mast be summed over all possible system states, what is very large, but since the probability of accurance of states with more than two units on forced outage at a time is very low, the summation is carried out practically over states reflecting a relatively small number of units on forced outage.
The security level of the system should not exceed a certain maximur tolerable insecurity level (MFIL), wiich is a figure to be deternined by system management based on past experiency. Therefore, once th: imils to be committed at a particular load level are known from purely economic considerations, the security function is conputed as per equation (13). If the value of exceeds MIIL, the economic UC schedule is modified by bringing-in the next most econonical unit as per the UC table, is then recalculated and checked and the process is continued till $S \leqslant M T I L$: Practical experience shows that as the economic UL table has some inherent spinning reserve, rarely more than one iteration is found to be necessary. After getting a secure and economically optimal UC table for all individual periods of the load curve, such a table is to be checked to find if certain units have to be started and stopped more than once. If so, start-up cost of these units must be taken irto consideration from the poiat of view of overall econony. This means that we have to examine whethe: or not it wall be more economical to avoid restarting by continuing to run these univs.

Example: Consider that the station for which the economical UC table had been obtained in the previous example is used to supply a load having the following daily load cycle:
Day time $\quad 12 \mathrm{~min}$. to $4 \mathrm{amm} \quad 4-8 \quad 8-12 \mathrm{n} \quad 12 n-4$ pin. $\quad 4-8 \quad 8-12 \mathrm{~m} \cdot \mathrm{n}$

Load, MM \qquad 10.

15
20

Construing the economical UC table for this load and check if it is secure in every period assuming identical failure and repair rates of 1 and 99 pe: year respectively for all the four units and the the system MIIL is 0.005 .

Solution: The UC table show below is directly obtained for the given load cycle using the previously prepared UC table in the last example.

Day tire: 12 min -te 4 rom m. $4-8$ 3-12m $12 n-4 \mathrm{~m} . \mathrm{m} \quad 4-8 \quad 8-12 \mathrm{~mm}$,
Lad ,M
Committed units

5	10
1	1,2
$\frac{A}{1+\lambda}$	
any unit being in servia	
$99+1$	

The probability of any unit being on forced outage is:

$$
q=\frac{\lambda}{\mu^{\mu}+\lambda}=\frac{1}{99+1}=0,01
$$

The probability of having a state i defined by X units in service and $n-x$) units on forced outage out of n units cooperating in parallel at a time is

$$
R_{i}=0.99^{x} \times 0.01^{1}
$$

Considering now the first time period ($12 \mathrm{~m} . \mathrm{n}$. to 4 adm.). Number of committed units as given in the economical UC tab ie $=1$ with this unit operating there is only two possible states, either the unit is available or unavailable.

The probability of the first state $P_{1}=0.99$
The probability of the second state $P_{2}=0.01$
W: th the unit available, running capacity (12 MN) is greater than the load, therefore ${ }^{2} 1=0$. In the second state, the unit is not available, therefore $r_{2}=1$ The security index for this period is:

$$
S=0.99 \times 0+0.01 \times 1=0.01>0.005(M 1 L)
$$

Thus unit 1 alone supplying the 5 MV load fails to satisfy the prescribed security criterion. In order to obtain optimal and yet secure UC, it is necessary to ran the nest most economical unit, i.e. unit 2 along with unit 1 .

Whit both unit 1 and 2 operating, there will be four different possible states: - Bet unis are available, both units are onforced outage, unit 1 availal, le and unit 2 unavailable, unit 1 on forced outage and unit 2 available. The probability that t h system state causes breach of system security r equals 1 only in th= sector state.

$$
\begin{aligned}
& \text { state. } \\
& Q_{1}=0.99 \times 0.99=0.9801, \quad P_{2}=0.01 \times 0.01=0.0001 \\
& P_{1}=0.99 \times 0.01=0.0099, \quad P_{4}=0.01 \times 0.99=0.0099
\end{aligned}
$$

The ecrresponding security index for this as is:

$$
\begin{aligned}
& \text { spending security index for this as is: } \\
& \begin{aligned}
S & =0.2801 \times 0+0.0001 \times 1+0.0099 \times 2+0.0099 \times 0 \\
& =3.0201<0.005 \text { (MI IL) }
\end{aligned}
\end{aligned}
$$

Proceeding similarly and checking security functions for the other periods of the load cycle, we obtain th: following economical and secure UC table for the consicered station to supply the given load according to the shown load cycle. The obtained sable is given below:

For a given system, if the transmission losses are negligible, the total system load can be optimally deviled among various generating stations by applying the equal incremental cost criterion given in equaltimon (8) to the cost curves obtained for individual stations as described in section 2.3.5. It is, however, urrealistic to neglect transmission losses particularly when long distance transmission of power is involved. Transmission losses may very from 5 to 15% of the total load of modern electric utilities serving vast areas of relatively load density. Therefore, it is essential to account for losses while developing the economic load dispatch policy.

In this case the objective is to minimize the overall cost of generation as given by the equation,

$$
\begin{equation*}
c=\sum_{i=1}^{m} c_{i} \quad\left(P_{i}\right) \tag{4}
\end{equation*}
$$

At any time under equality constraint of meeting the load demand with trasmission losses, .e.

$$
\begin{equation*}
\sum_{i=1}^{m} P_{i}-P_{D}-P_{L}=a \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
& m=\text { Total number of generating plants, } \\
& P_{i}=\text { Output power of the ith plant, } \\
& P_{0}=\text {-System Load demand (Summation of load demand at all buses, and } \\
& P_{L}=\text { Total system transmission losses. }
\end{aligned}
$$

To sclve this problem, we write the lagrangian as

$$
\begin{equation*}
\mathcal{L}=\sum_{i=1}^{m} C_{1}(\hat{i})-\lambda\left[\frac{5}{1} P_{1}-P_{i}-P_{L}\right] \tag{15}
\end{equation*}
$$

for optimum real power dispatch.

$$
\begin{equation*}
\frac{\Delta L}{a!}=\frac{-d x}{-1+1}-\lambda-=-x+1, x_{1}+\cdots+m \tag{19}
\end{equation*}
$$

Rearranging Equation (16), we have

$$
\frac{d c_{i}=p^{i}}{1-2 p_{L} 10 p_{i}}=\lambda \text { or } \frac{d c_{i}}{d p_{i}} L=\lambda, i=1,2, \ldots \ldots \text { m. }
$$

where

$$
L_{i}=\frac{1}{1-O P_{L} / \partial P_{i}}
$$

is called the penalty factor of the th plant:

The Lagrangian multiplier λ is in LE per MWHR, when the generation most is in LE per hour and power is in MW.

Eçuation (17) shows that minimum generation cost is obtainec when the incremental cost of each plant multiplied by its penalty factor is the same for all the plants.

The ($\mathrm{m}+\mathrm{I}$) variables ($\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{m}}$, can be obtained by solving the E optime dispatch equations (17) together with the power balance equaLion (14). The partial derivative $\partial P_{L} / \partial P_{i} \quad$ is referred to as the incremental transmission loss (ITL), associated with the lith generating station. Equation (17) can also be written in the alternative form.

$$
(I,)=\lambda\left[L_{1}(-(I T L) i], i=1,2, \ldots \ldots, m\right.
$$

which is referred to as the exact coordination equation.

To solve the optimum load shceduling problem, it is necessary to compute ITL fer all plants. Therfore, before starting the solution, we have to determine the functional dependence of transmission loss on real powers Cf generating plants, i.e, to determine the function.

$$
\Pi=f\left(P_{1}, P_{2}, \ldots, P_{n}\right)
$$

3.2. GENE $\angle A L$ TRANSMISSION LOSS FORMULA:

The network losses can be obtained by simp y adding the fus power at all fuses with a noted voltage Vi at the node i and nodal injected power SI, Garment Ii at the same node, th= total active and reactive power loss PL - JCL in the network is given by:

$$
\begin{align*}
& \text { network is given by: } \tag{x-}\\
& 0 \\
& L
\end{align*} S_{i}=\sum_{i=1} V_{i} I_{i}
$$

The Jas: sun can be writien as the vector product: V bus I buss
Where: v^{\top} bus $=\left[V_{1}, V_{2}, \ldots V_{n}\right]$

$$
v_{\text {bus }}^{\top}=\left[V_{1}, v_{2}, \ldots v_{n}\right]
$$

and $I_{\text {bes }}^{*}=\left[\begin{array}{l}I_{1}^{*} \\ I_{2}^{*}\end{array}\right]$ is the ejugate of the bus

But $V_{\text {bus }}=I_{\text {bus }}^{2}$ bus, and V^{\top} bus $=I_{\text {bus }}^{T}+Z_{\text {bus , where }}^{\top}$
z bus is the bus impedance matrix of the network

Similarly, the bus current vector can be written as a sum of a real and reactive component vector as follows:

$$
\text { I bus }=I_{p}+j I q=\left[\begin{array}{l}
I_{p 1} \\
I_{p i} \\
I_{p n-}
\end{array}\right]+\left[\begin{array}{l}
I_{q_{1}} \\
I_{p_{2}} \\
I_{q_{n}}
\end{array}\right] \text { (} 14 \text {) }
$$

$$
\begin{align*}
& \text { Substituting all these equations in equation (20) we get: } \\
& \begin{aligned}
p_{L}+j G L & =I \text { bus } Z \text { bus } I \text { bus }=I \text { bis } Z \text { bus I bus } \\
& =\left(I_{p+j}^{\top} I_{f}^{*}\right)^{\top}(R+J X)\left(I p-J^{\prime}\right)
\end{aligned} \tag{23}
\end{align*}
$$

Z bund T s taken equal to Z bus because it is a symmetrical matrie.

Taking the real part of both sicies of equation (25) , we get:

$$
\begin{equation*}
P_{L}=I_{p}^{\top} R I_{p}+I_{B}^{\top} \times I_{f}+I_{f}^{T} R I_{f}-I_{\ell}^{!} \times I_{P} \tag{2E}
\end{equation*}
$$

It is easy to proove that the second and fourth terns are equal because the marie X is symmetrical, therefore Equ. (26) reduces to

$$
P L=I_{q}^{T} R=P+I_{G}^{T} R I Q
$$

Retuming back to the ind x notation PL can be written

$$
P L=\sum_{\substack{j=1 \\ k=1}}^{n} r k\left(I p j \quad I p k+I_{f j} \quad\right. \text { If k) }
$$

To express th : total powe $=$ loss in terms of bus powers and bus voltage instead of expressing it in terms of bus currents as given in Equ. (28), we will proceed as fol.:

$$
\begin{align*}
& I_{1}=I_{P_{i}}+J_{i}^{\prime}=\frac{S_{i}^{*}}{V_{i}^{i}}=\frac{P_{i}-\mathcal{Q}_{1}}{\mid V_{1}\left(\operatorname{Gus} S_{i}-j S_{m} S_{i}\right)} \\
& =\frac{P_{i}-j Q_{i}}{\left|V_{i}\right|}\left(Q_{j} 5 i+j \operatorname{Sim} S_{i}\right)
\end{align*}
$$

Where Si is the angle of Vi with respect to the reference bus voltage (i.e. slack bus voltage). By sepera-ing the imaginary and real parts of Eq. (19), we get:

$$
\begin{align*}
& I_{P}=\frac{1}{w_{i} \mid}\left(P_{i} G_{n j} S_{i}+Q_{i} S_{i n} S_{i}\right) \tag{3-}\\
& I_{i+i}=\frac{1}{\left|w_{i}\right|}\left(P_{i} \operatorname{Sm} S_{i}-Q\right. \text { Gus }
\end{align*}
$$

Substituting these expressions for the currents into the Eq, (28), we get PL, after some algebraic operations, as:

$$
\begin{equation*}
P L=\sum_{\substack{ \\k=1}}^{m}\left[\alpha j^{k}\left(P_{j} P_{n}+Q_{k} ; Q k\right)+P_{j} k\left(Q_{j} P_{k}-P_{j} Q k\right)\right] \tag{ii}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& x^{j} k=\frac{d^{k}}{1+j \| v \pi \lambda} \quad \operatorname{Cus}(5 j-5 \pi)
\end{aligned}
$$

3.3. INCREMEINTAL TRANSM: SSION LOSS ITL:

The incremental transmission loss (TLL) i for the power plant i delivering an output power $P_{A_{1}}$ is given by;

$$
\begin{equation*}
\left.(J L)_{i}=\frac{a P L}{\partial P_{a i}}=\sum_{j=1}^{m} \frac{\partial}{K_{L 1}}\left(\alpha_{j} \dot{j} F_{j} \beta_{k}+Q_{j} Q_{i k}\right)+\beta_{0} \times\left(Q_{j} P_{k}-P_{j} Q_{i j}\right)\right] \tag{33}
\end{equation*}
$$

1) Mai is replaced by DPi because the gower bala ce equation at node i, is $P_{a i}=P_{1}+P_{D i}$
Where $P D i$ is the demand power at this bus and is kept constant so that

$$
\text { (1)PDi }=0 \text { and } D P_{a i}=\partial P_{i}
$$

Manipulating Eq. (33) and rearranging it ($I T_{-}^{-}$) i can be changed to the form:

Also it can be shown that $\quad[\quad$ -

$$
\frac{1}{|y / k| 1 v k \mid \sin (5 k-5+M, k)]}
$$

$$
\left.\frac{1}{\mid g_{j} \| V_{j} \backslash \sin \left(y_{j}-5 i-M_{i} j\right)}\right]
$$

are the elements of the bus admittance matrix of the network having the indices iN and if respectively.
Equations (35) together withe equation (34 permit us to compute the ITLs prom the knowledge of bus voltages and bus powers.
Experience with typical system parameters hes show that the contribution of the doublesum term in Eq. (34) to ITLs, is usual y insignificant, which may allow us to negleet this term to get the following approximate but time saving formula for (ITL).

$$
\begin{equation*}
(1 T L) ; 2 \sum_{k=1}^{n}(P k d i k-Q k \beta i k) \tag{36}
\end{equation*}
$$

$$
\begin{aligned}
& (I T L)_{1}=2 \sum_{k=1}^{n}\left\{F_{k} \beta_{k}-Q k P_{i} k\right)-\sum_{j=1}^{n}\left[\left(P_{j} P_{k}+Q_{j} Q k\right) \frac{\partial d j k}{\partial P_{i}}=\right.\text { (36) } \\
& \left.=\left(P_{J} Q L-Q j P_{K}\right) \frac{\partial \vec{P}_{j} / \pi}{\partial P_{i}}\right]^{j^{j=1}=1}
\end{aligned}
$$

3.4. Digital Computer App ication to Solve th: Optimum Gene:ation Sch iduling Problem:

The probler, here is smewhat corplicated because the "Optimum dispatch Eqiatior ${ }^{-1}$ " and the "Power balerce equation" contain loss terms which themselves are funct:ons of all th= indivicial generator outputs. This makes the dispatch ecuations coupled, i.e. each equation is a function of all generator output powers. Figure 7 shows a flow chart for a proposed digital computer program to solve th: optinum cispatching problem for a lossy syatem. The basic computation steps are as fcilows:

1. Eving available informetion about all load demands SDi, specified voltage ragr:tuces/Vi/ for control buses and assumed initicl values of genetator powers, a solution to the load flow probleri is then pe:formed.
2. Faving found, from th: cutput of load flow solution, information about all bus voltages, power angles, generator powers, the (1TL)i can be computed whict pergis us to start an iterative process by to solve the optimal dispatch equations to find a first set of opt nem gensrator outputs.
3. An initial guess is mede regarding the geneator output we have nc assurance that htese initial values are optimal in any sense.
4. The generator outputs are then readjusted in accordance with computed oftimum $v=l v e s$, then we solve the load flow problem,
5. T-e innst and outer iterative processes will continue unt:I a solution within tro specified accuracy is reached,
compute $Z_{\text {bus b }}$ by Inversion of Xmas
Make initial assumptions assent $P_{G 2}^{(0)}, \ldots, P_{G m}^{(0)}$
Set toad flow iteration count $\mu=0$
Solve the lead flow equations using the lo al flow program and fund all bus Nottayes $V_{i}^{(H)}$ and. powers s i(${ }^{(1)}$

- compute all trice power,

Fig. 7 Flow diagrave for computation of the optimum dispatch problem with comsicteration of lasses

